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1. Phya: Condens. Matter 4 (1992) 873723754, Printed in the UK 

Kinematics of the one-dimensional finite Heisenberg magnet 
with impurities 

Barbara Lulek 
Institute of Physics, A Mickiewia University, 60.769 poulari, ul. Matejki 48/49, Poland 

mived 14 January 1W2, in final form 20 July 1992 

AbsImcL The kinematics of the onedimensional finite Heismberg magnetic ring mth 
impurities h discussed in the light of the general recipe of Wyl. The qclic p u p  
generating the ring, and the p u p  of all its automorphsms, play the mles of the obviaus 
and hidden symmetry, rspstively. The hidden symmetry p u p  imposes a pmpeny of 
the dislribution of quantum aates of a vanslationally invarianl m m M e  of magnets mer 
the finite Brillauin mne. Namely, this distribution h mnsUnt on each orbit of the action 
of the hidden symmeuy p u p .  It is shown that the above proper ty  cannot be huken. 
neither by my chemical composition of impurities nor by change of their localizalion. 
Inhomogmeitim of the distribution arise from irregular orbits of the action of the q d i c  
p u p  on the set af all magnetic mnfigurations of the ensemble. Irregular orbils am 
indigtors of the reference system of ‘absolute Test’ in the ayslal, mmponding to 
the a n m  of the Brillouin lone, whereas the case of emlusivcly regular orbits dnes 
MI -de rueh a distinction, 60 that all quasimomenla mter the theoly on the Same 
footing. Sizedependent &em, like rarefied bands, are classified using the arithmetic 
S I N ~ U I T  of integers (prime numbers, rocks and arithmetic agoncnts), which h more 
appropriate than the linear order in the ring of integers. 

1. Introduction 

We aim to discuss some kinematical properties of the one-dimensional finite 
Heisenberg model of a magnet with impurities, within the framework of the general 
recipe of Weyl (1952; cf also references in Florek el a1 1991). According to the 
Heisenberg model, the magnet consists of N spins s, localized at nodes of a one- 
dimensional linear ring, and interacting pairwise by an exchange Duac Hamiltonian. 
We are interested here in the quantum kinematics rather than dynamics. More 
specifically, we are looking for the distribution of quantum states of the magnet over 
the Brillouin zone of the crystal, and for the mnstruction of a space corresponding 
to each particular quasimomentum. 

Hitherto mnsiderations of kinematical properties of the Heisenberg model for 
the chemically homogeneous magnet (Lulek 1984, Florek and Lulek 1987) and the 
magnet with a single impurity s’ # s (Lulek 1988) exhibit two, somehow opposed, 
tendencies. On the one hand, the mite size of the magnet yields the result that the 
distribution of quantum states over the Brillouin zone is inhomogeneous, at least for 
the case of a chemically homogeneous magnet. Details of this inhomogeneity strongly 
depend on the arithmetic structure of the integer N (Florek and Lulek 1987). On 
the other hand, breaking of the translational symmetry of the crystal just by a single 
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8738 B Lulek 

impurity completely wipes out any inhomogeneity of the distribution of states over 
the Brillouin zone, for each integer N > 1 (Lulek 1988). 

Here, we are going to resolve this apparent puzzle using the general recipe of 
Weyl(l952) (see also Mozrzymas 1976,1987, Horek et al 1988 and Mucha 1991) and, 
in particular, our combinatorial approach referred to as the method of irregular orbits 
(Lulek 1991). It allows us to present transparently and unambiguously kinematical 
properties of the Heisenberg magnet with impurities. In particular, we discuss the 
origin of the symmetry property that the distribution of states is constant on the 
generalized stars in the Brillouin zone, interpreted by Florek and Lulek (1987) as a 
result of the hidden symmetry Aut C, of Weyl's recipe. We point out here that this 
symmetry is even more intrinsically incorporated in basic structural assumptions of 
the Heisenberg model, since it cannot be broken by any substitution-type impurity, 
without a change of the structure of a linear ring. 

We also clarify the effect of the levelling of inhomogeneity of the considered 
distribution by impurities. An important point is that this breaking of translational 
symmetry by an impurity implies that the notion of the Brillouin zone ceases to be 
applicable. This notion is restored by an appropriate average over an ensemble of 
magnets with varying localization of impurities. This configuration average is the key 
reason for the levelling of the size effect in the case of a single impurity. We discuss 
here the general case of several impurities, and analyse the breaking of translational 
symmetry for this case. 

2. Combinatoric description of the ensemble of magnets with impurities 

Let 

N = {j I j = 1,2, ..., N )  (1) 

be a regular orbit (i.e. an orbit of the left regular representation) of the cyclic group 
C,, constituting the set of nodes of a onedimensional crystal with the Born-KarmBn 
boundary conditions of the period N. Thus C, is the translation symmetry group of 
the crystal N .  The set 

*( N I 2  - l ) ,  N/2 
+( N - 1)/2 

for N even 
for N odd 

k = O , H , f 2  ,..., 

of labels of irreps of this poup (r,(j) = exp(Zrrikj/N) where j E N )  coincides 
with the set of all admissible cpasimomenta, and will be identified from here with the 
Brillouin zone of the crystal N. 

Let 

f = { ? - l ? - = l , 2 ,  ..., l }  (3) 

denote the set of labels of all chemically equivalent classes of atoms constituting the 
crystal N .  A distribution of these atoms over the crystal I? is given by the mapping 
p : N + i, called the chemical configuration. Each chemical mnfiguration p defines 
the decomposition 

lv = U p-l(?-)  (4) 
T € r  
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of the crystal 15 into subsets 

p - ' ( r )  = {j E 15 I p ( j )  = r }  r E i 
of nodes with atoms of the type r. The numbers 

6, = lp-'(r)l  r E N 
of elements of the set p - l ( r )  define the partition 

6 = (6, .. . , b 7 )  

of the integer N into I parts, so that 

c6. = N. 
Fer 

Thus the partition 6 determines the chemical composition of the crystal. We a w m e  
for convenience that 6,+, < 6, E i. In particular, 6, is the number of atoms of the 
principal compound, and 6, for r > 1 is the number of atoms of the rth type of 

Magnetic properties of an atom of the rth type are characterized within the 
impurity. 

Heisenberg model by the spin s7, and thus by the set 

fi,. = {i 1 i = l , Z ,  ... ,n,) n, E Zs, + 1 e9 
of projections 

m ; = i - s , - 1  i E f i ,  (10) 

of the spin sy  into a distinguished zdirection in the crystal. An arbitrary magnetic 
configuration is given by 

f = Ji, . . . ,in) ij E fi, for j E p - ' ( ~ )  c N. (11) 

The set of all magnetic configurations of the crystal N with the chemical configuration 
p is the artesian product 

of sets of mappings 

fi*-'W = {f' : p - l ( r )  + fiy} T E ~  (13) 

enclosing all magnetic configurations for the rth-type atoms. 
The space L of all quantum states of the magnet is the linear unitary space 

obtained as the linear closure of the set Q ( p )  over the field C of complex numbers, 
which is witten as 

L = lccQ(p) (14) 
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and @ ( p )  is an orthonormal basis of L. 
An important difficulty with admixtures consists in the observation that neither 

the set @ ( p ) ,  nor the space L, are dosed under the action of the translation group 
C, (besides the trivial case p = (N, 0, ...., 0), corresponding to the chemically 
homogeneous magnet). Thus the notion of the quasimomentum k loses i s  meaning 
within the space L. We avoid thii difficulty here in the Same way as in our previous 
paper (Lulek 1%), namely by introducing an ensemble of magnets with some varying 
chemical configurations, each with the Same chemical composition. Formally, an 
ensemble of magnets h defined as an equivalency class of chemical configurations 
under the action of a subgroup H of the symmetric group on the set N. In other 
words, an ensemble h an orbit of the action of the group H on the set 

is = { p  : iV - i] (15) 

of all chemical configurations. The requirement that the ensemble should be closed 
under the action of the translation group C, implies 

C, 5 H E,. (16) 

Ihe choice of an ensemble is thus equivalent to the choice of the subgroup H 
and of an initial chemical anfiguration p. In particular, the choice H,, = C, 
preserves the dependence on the internal structure of the chemical configuration 
p, i.e. the relative positions of impurities, whereas H,, = C, yields only to the 
dependence on the chemical composition 6. In the following we discuss mainly the 
case H = H,, = C,. Let 

U =  (&)) EX, j € N  

be an arbitrary permutation on the set N. Then the ensemble 2 of magnets, 
generated by the subgroup H from the chemical configuration p, is 

2 = { p o u - '  I u s  H )  (18) 

where p o U-' = p' is the configuration obtained from p under the permutation U, 
ie. 

(19) -1 ' P ' W  = (3)) j E N. 

The set of all magnetic configurations, corresponding to the ensemble 2 is 

Clearly, the number of elements of the ensemble 2 k 
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where 

H(') = {U e H I p o U(-') = p }  (22) 

is the stabilizer of the chemical configuration p in the subgroup H C E,. The set 
a, is already dosed under the action P : C, x aZ - Qz of the symmetric group 
C,, defined in a standard way as 

Note that the image of the magnetic configuration li '...,iN) E Q ( p )  c Q,, 
corresponding to the chemical configuration p E 2, is the magnetic configuration 
l ~ ~ - , ( ~ ~ , . . . , ~ u - ~ ( N ) )  E @ ( p  o u-l) C Qz, which corresponds to the chemical 
configuration p o U-'. 

Now we are able to define the distribution of states of the ensemble Z over the 
Brillouin mne B.  Let 

be the decampasition of the restriction P 1 C, of the representation P to the 
subgroup C, c E,, acting in the space 

L ,  = IC,a, (25) 

into heps  of C,, with multiplicities m ( P  1 C,, rk). Then the formula 

defines the distribution e : B + Q of quantum states of the ensemble Z over the 
Brillouin zone, with Q being the field of all rational numbers. 

3. The recipe of Weyl 

An adequate framework for the discussion of symmetry breaking h provided by Weyl's 
recipe (1952), which states that the intrinsic features of a system equipped with a 
symmetry G, called the obvious symmetry group, emerge from a careful study of the 
group Aut G of all automorphisms of the group G. m e  group Aut G is then referred 
to as the 'hidden' symmetry of the system. In our case, the system under investigation 
is the ensemble 2 of Heisenberg magnets, each magnet endowed with the structure 
of a regular orbit of the translation group C,. Chemical and magnetic properties of 
the ensemble Z are specified by the set aZ of all magnetic configurations for various 
distributions of component atoms over the crystal R. Clearly, an evident candidate 
for the obvious symmetry is G = C,, the cyclic group of order N .  

The group C, of the obvious symmetry of the model is described m terms of the 
arithmetic structure of the integer N .  Let 
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be the canonical decomposition of N into prime factors. Here, K( N) is the set of all 
prime divisors of N ,  known as the socle of N, and ap( N ) ,  p E n ( N ) ,  are arithmetic 
exponents of N. We refer hereafter to (27) as the arithmetic structure of N .  The 
lattice K(  N) of all subgroups of the translation group C, coincides with that of all 
divjSors of N 

K ( N )  = n = n ppp(s)10 < ap(n) < a , ( N ) , p  E n ( N ) )  (28) { P M N )  

where the partial order E imposed by divkibility, the minimal element is npin = 1, 
and the maximal nmX = N .  The structure of the lattice K ( N )  is transparently 
presented in a In(N)ldimensional space spanned by the socle n ( N ) .  Namely, the 
lattice K ( N )  can be looked at as the set of nodes of a finite In(N)ldimensional 
crystal, With the socle n ( N )  as the elementary Bravais cell, repeated a , ( N )  times 
in the direction p E n(N). Thus, mutual incommensurability of different prime 
numbers is reflected geometrically in terms of points in a Irr(N)ldimensionaI space 
of arithmetically independent variables, i.e. arithmetic exponents ap( n) , p E T (  N ) .  
The kttice K ( N )  serve8 to express in an invariant way most of the essential structures 
associated with the group C,, like the lattice of subgroups (i.e. K (  N) itself), 
lattices of epikemels in stratification of actions of C, on various sets, generalized 
stars in the Brillouin lane, etc. In particular, each orbit of the cyclic group CN is 
uniquely characterized by the stabilizer C, a C, of this orbit, labelled by an element 
x E K ( N ) .  Clearly, the number of elements of such an orbit is 

n E K ( N )  (29) 
- N  n = -  

X 

ie. the divisor ic E K ( N ) ,  complementary to n in the lattice K ( N ) .  The case 
n = 1, ie. R = N, corresponds to an orbit of the regular representation, ie. the 
free action of the group C,. Each such orhit consists of N elements, and is referred 
to hereafter as a regular orbit, whereas each x > 1 defines a type of irregular orbit, 
with R < N elements. 

Elementary number theory implies that the hidden symmetry group of Weyl's 
recipe b 

where kd ( r ,  N )  denotes the largest common divhor of integers r and N .  The 
elements of Aut C, are automorphisms T~ : C, - C,, labelled by all those 
positive integers T < N, which are relatively prime to N .  In particular, r, is the 
unit element of Aut C,, rN-, E T-, corresponds to a one-dimensional inversion of 
the crystal fl at the node j = N E 0 mod N ,  whereas all other elements T? can 
be interpreted as some self-similar, or fractal-like, transformations on R (Lulek er a1 
1991, Kutma 1991). 

Hidden symmey Aut C, is displayed, according to the .Weyl's recipe, in some 
intrinsic features of the system. In particular, we consider here kinematical properties, 
ie. we are looking for spaces of all accessible states of a stationary motion Within 
the system. We thus expect that the group Aut C, should be reflected in some 
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symmetry properties of the distribution e of such states wer the Brillouin zone B. 
Indeed, Florek and Lulek (1987) have shown that for the case of a single chemically 
homogeneous magnet the distribution e is constant on each orbit of the action of the 
hidden symmeMy group Aut C, on the Brillouin zone E. In more detail, the action 
V :Aut C, x B -+ E ,  given by 

decomposes the Brillouin zone 

B = U E(") 
E E K ( N )  

into orbits 

= {"Id N I T E Aut CN} n E K (  N )  (33) 

(for brevity, we write r instead of T ~ ) ,  labelled by elements of the lattice K ( N ) .  Each 
orbit B(") is referred to as a generalized star of the wavenumber, in accordance with 
an analogy between the hidden symmetry group Aut C, and the crystallographic 
point groups (Florek er 01 1988). The distribution e for the chemically homogeneous 
magnet i thus " a n t  on each generalized star E ( = ) ,  ie. 

e( k )  = constant k E B(') for each K E K (  N ) .  (34) 

It implies that the hidden symmetry Aut C ,  manifests itself m the symmetry of 
kinematical properties of the magnet. 

Florek and Lulek (1987) have expressed the opinion that the propem (34) of 
symmetry of the distribution e of quantum states of a Heisenberg magnet in the 
Brillouin zone B can be broken by impurities. In the next section we show that it is 
not the case, i.e. that this property still holds for an arbitrary composition 6 as well 
as for an arbitrary chemical configuration p of impurities. 

4. The method d irregular orbits and the rarefied Brillouin mnes 

We proceed to evaluate the distribution e for the ensemble 2 of magnets, using our 
method of irregular orbits (Lulek 1991a, b). The method is based on stratification 
of the set aZ of all magnetic configurations of the ensemble Z under the action 
P 1 C,., of the cyclic group C,, ie. on the structure of the set of all orbits of C, 
on GZ. 

Let 0, c aZ be an orbit of the group C,., on the set aZ with the stabilizer 
C,., n E K ( N ) .  The key observation is that 

p l c N I O s E  @ r k  (35) 
k € B l *  

where the set B/n is a subset of the Brillouin zone 8, given by 

B/K = { k  E B I K E K(lkl)}. (36) 
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In other words, the restriction of the action P 1 C, to the orbit 0, or, more 
accurately, to the linear space 

L, =ICc 0, (37) 

decomposes into irreps rh of C ,  in such a way that each irrep of the set B/n enters 
exactly once, whereas all the remaining irreps from the Brillouin zone B do not enter 
at all. The subset B/n c B mnsists of all multiples of the wavenumber n, and b 
referred to as the 6-tuply rarefied Brillouin mne. Each such rarefied Brillouin mne 
B/n yields, through the eigenproblem for an appropriate Hamiltonian, a rarefied 
energy band, ie. such a band which encloses altogether rZ rather than N states. 
These stat- are seeded discretely, but uniformly, within the ‘full’ Brillouin zone 
B G B/1 (Lulek 1984, Florek and Lulek 1987, Lulek 1991a, b). 

In this way, the total distribution e can be put in a form 

e ( k ) =  e , ( k )  (38) 
r E K ( N )  

of contributions e, arising from the stratum mnsisting of all orbits of type n, ie. 

m( P, n)/lZl for k E B/n 
otherwise (39) 

with m(P,n) denoting the number of orbits of C ,  with the stabilizer C, on Q z .  
The latter can be readily evaluated by combinatorial methods (Burnside lemma) as 

where 

lQ$‘)l = I{f E @ Z l f O  u- l=  f,a E C*#}I (41) 

b the number of fixed elements of the set Qz under the action P 1 C,, of the 
subgroup C,, o C,, and EKs , (CN) ,  n,n’ E K ( N ) ,  are elements of the Bumside 
matrix for the group C, (Kerber et ul 1991). The latter k given by 

Bsx, (CN)  = { : p ( K ’ / n )  for n E K (  n’) 
otherwise 

and p is the Mtibius function of number theory, given by 

for N = 1 
p ( N )  = (-l)IT(N)’ for a , ( N )  = 1, p E * ( N )  (43) {: otherwise 

(cf equation (27)). In particular, the case of a chemically homogeneous magnet yields 
(Florek and Lulek 1987) 
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where K' = Icd(Rn,, N), and 9 is the Euler function of number theory, given by 

p ( N )  IAutC,l= n p". (N)- ' (p-  1). (45) 
P€*P" 

In this way, the homogeneous part of the distribution e arises from the full bands, 
corresponding to regular orbits (n = 1) of action of the translation group CN on 
the set QZ of all magnetic configurations of the ensemble Z of magnets. In other 
arords, a regular orbit contributes exactly one quantum state of the ensemble Z for 
each wavenumber k of the Bdlouin zone B. On the other hand, inhomogeneity 
of this distribution is related to rarefied bands, which correspond to irregular orbits, 
ie. orbits with the non-trivial stabilizer C,, n > 1. An irregular orbit of the type K 

spreads over the rarefied Brillouin zone B / K  c B, Le. cuntributes one state for each 
multiple of n in B, and yields a vacancy for any other wavenumber k E (B\( B/n)). 
It results in inhomogeneity of the total distribution e. 

We are thus left with all irregular orbits of C, on QZ. These, and only these, 
orbits give rise to inhomogeneities of the distribution e. Such an orbit is characterized 
by its stabilizer, which is a non-trivial subgroup C, o C,, K > 1. Clearly, the orbit 
itself exhibits the translational symmetry, given by its stabilizer C,. In other words, 
the translational symmetry CN of the system is not broken at this orbit totally (as 
in the case of an arbitrary regular orbit), but only partially. The orbit itself can be 
looked at as a new periodic structure, with the Bom-Karmbn period K instead of N, 
and the new elementary Bravais cell enclosing R nodes. Thus such an irregular orbit 
corresponds to a phase with broken translational symmetry, resulting from a Peierls- 
like phase transition with a E-tuply enlarged elementary cell of the prototypic phase 
(Peierls 1955; cf Kuima et a1 1989, 1991). The breaking of translational symmetry 
results either from impurities, i.e. chemical configurations, or from the shape of 
magnetic configurations, or from a combination of both. 

In the case of a chemically homogeneous magnet, (21 = 1, the breaking of 
translational symmetry results exclusively from the shape of magnetic configurations 
within an orbit In the case of a regular orbit the elementary Bravais cell of a 
magnetic configuration coincides with the whole crystal, and yields an homogeneous 
contribution to the distribution e. Inhomogeneity of e emerges from all those 
magnetic configurations which exhibit an elementary Bravais cell of the size E < N .  
It is discussed in detail elsewhere (Lulek 1991a). 

The case of a single impurity, 6 = (N - 1, l ) ,  H = C,, and thus [Z( = N, 
yields that Qz consists exclusively of regular orbits of the group C,. It results from 
the observation that all elements of an orbit of C, in Qz differ mutually by the 
position of the impurity (cf equation (23)). The distribution Q is given therefore by 
the simple formula 

e(k) = (2s + 1)N-1(2s' + 1 ) / N  k E B (46) 
and is homogeneous in the Brillouin zone B (Lulek 1988). Thus the picture of 
orbits displays unambiguously the somehow surprising result of a complete levelling 
of inhomogeneity of e by a single impurity. 

In the general case, i.e. for an arbitrary chemical composition e, the stabilizer of 
a chemical configuration p in the symmetric group C, h the Young subgroup 

I 
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Le. the outer direct product of symmetric groups, each acting on the subset of 
chemically equivalent nodes. Thus the chemical mnfiguration p can yield an irregular 
orbit of magnetic configurations only in the case when the intersection 

is non-trivial, Le. IC > 1. In particular, it is clear that this condition cannot be 
satisfied for a single impurity, ie. for 6 = (N - 1, I), since 

In the case of two admixtures, ie. 6 = ( N - 2, 2), the condition (48) can be satisfied 
only for even N and antipodal chemical configurations, i.e. when admixed ions occupy 
mutually antipodal positions in the chain. In thii case 

C, G E, for antipodal chemical configurations 
otherwise. (50) cNn P ~ - ~  E,) = { cl 

In general, irregular orbits emerge only in cases of a symmetric distribution of 
impurities in the chain, so that there remains a non-trivial translational symmetry. 

We proceed to discuss the symmetry property (34) of the distribution e . With 
this aim, we observe that 

which implies that each rarefied Brillouin mne B / n  is a union of some complete 
generalized stars of B. It also follows that the distribution Q : B -t Q for the 
ensemble 2 of magnets is constant on each generalized star BCr) c B,  n E K( N), 
for an arbitrary chemical composition and spatial distribution of atoms. 

We have thus shown that the symmetry properly (34) is deeply associated with 
the orbit structure of the space L ,  of all quantum states of the ensemble Z, 
and cannot be broken by any change in chemical structure. The breaking of this 
symmetry property can be done in a way that violates some model assumptions for 
the Heisenberg magnet. It can be performed by, for example, some constraints for 
admissible quantum states, such that the resultant space L‘, c L ,  cannot span over 
orbits of the translation group C N .  

5. An example 

The existence of rarefied bands, as well as their selective levelling by impurities, can 
be demonstrated on a simple, but representative enough, example of N = 12, the 
chemical composition 6 = (8,4),s = 1/2 and s’ = 1. The set of 

(142) = 495 

different chemical configurations corresponding to this composition forms an orbit of 
the symmetric group C,,, with the Young subgroup C(8,4) as the stabilizer. The 
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associated transitive representation SRc1z:c(834) decomposes under the subduction of 
E,, to c, as 

(53) 

into transitive representations SNr of the group C, = C,, with the stabilizer C,, 
n E K(12). The lattice K(12) is presented in figure 1. Assuming H = C,, 
as the group that defines the configuration average, we distinguish three kinds 
Zi,i = 1,2,3, of ensembles of magnets. The ensemble Z, corresponds to 
regular orbits (n 5 1, IZ,I = 12), 2, to (chemically) irregular orbits of the type 
n = 2 (lZ21 = 6 )  and 2, to K = 4 Thus the ensemble Z ,  
exhibits completely broken translational symmetry, whereas the other ONO carry some 
’residual’ invariance, described by their stabilizers C, a Cl2. ?he size N‘ = 2 of 
the elementary Bravais cell is N’ = 12,6,and 3 for the ensemble Z , ,  Z,, and 5, 
respectively. The sequences 

&&2:D(nS4) 1 c,, = “21 + 2 ~ 1 2 2  + a124 

(151 = 3). 

h h h h i i  

and 

h h i  

with h and i denoting the host and impurity atom, respectively, serve as examples of 
chemical configurations of the Bravais cell for the ensemble Z ,  and Z3, respectively. 

L 2 4 

Pigum 1. ?he lattice K(1Z). Armws indicate the partial order. observe that this p r t i a l  
order is not Mnsislent with the linear order (1. & 3, 4, 6, 12). 

The set @ ( p )  for a chemical configuration p belonging to any kind of ensemble 
encloses p ( p ) I  = 2’ x 34 = 20736 magnetic configurations. This set is not closed 
under the action P 1 C, of the translation group C,. The corresponding closed 
sets Q Z  contain pZl = 248832, 124416 and 62208 elements for the ensemble 
Z = Z,, Z, and Z,, respectively. The number m(@,  n) of orbits of type K E K (  N) 
can be evaluated using (40) with the Burnside matrix 

where rows and columns are labelled in the sequence (1, 2, 3, 4, 4 12) of elements 
of K (  12) imposed by the linear order of the ring Z (inconsistent with the partial 
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order shown in figure l), and dots and empty places denote zeros. The number 
p$')l of k e d  points under the action P 1 C,, of the subgroup C,, a C, a C,, 
is determined mmbinatorically by the size R' of the mrresponding period. In 
more detail, if n' divides both parts, 6, and 6, of the partition 6 = (8,4) (thus, 
if n' = 1,2, or 4), then I I is equal to IZI times the number of magnetic 
configurations COnstNCted on the elementaly cell of the size it' = N/n', with the 
chemical "position 6' = (6,/n, a,/&), and otherwise 6 zero. The resulting values 
of the number m( P, n) of orbits of type n for ensembles Z,, Z, and Z3 are listed 
in table 1. 

IWk L Numbers of orbits of lhe lype (r m lhc set Qz of all magnetic configurations 
ofanensembleZ ( N = l 2 , 6 = ( 8 , 4 ) , s = l / Z , s ' = l ) .  

FnsemMe ~ = l  s = 2  ~ = 4  

Zl 20 736 0 0 
zz 10296 144 0 
2 2  5148 66 12 

We observe that most of the orbits are regular ( n = 1, the first column of table l), 
and there are also orbits with the stabilizer C, and the elementaly magnetic cell 
consisting of six nodes (n = 2), and those with the stabilizer C, and the cell consisting 
of three nodes. Decomposition (32) of the Brillouin zone B into generalized stars 
has the form 

B z B/1 = { 12) U {il, i5}  U { &2} U {f3} U {f4) U {6} (55) 

and the relevant rarefied Brillouin zones are 

B / 2  = {12) U { f2 }  U {f4) U {6} 

B / 4 =  {12}U{i4} .  

The mrresponding distribution e, together with the structure of rarefied Brillouin 
zones and generalized stars, is listed in table 2 The first row for each ensemble Z 
corresponds to the homogeneous component of e, arising from the 'full' Brillouin zone 
B/1 E B, i.e. from regular orbits of C,, on Q z ,  next rows indicate contributions 
from rarefied Brillouin zones B/n emerging from irregular orbits, and the last IOW 

is the resultant distribution. The ensemble Z, exhibits the homogeneous distribution, 
Z, involves an inhomogeneity related to doubly rarefied bands, whereas 2, involves 
also another inhomogeneity, related to the 4-tuply rarefied Brillouin zone. 

6. Impurities and rarefied bands 

The translation group C, of the linear chain yields the notion of a 
quasimomentum k as an irreducible representation, and the Brillouin zone enters as 
the set of all quasimomenta. In the case of impurities, these notions are abandoned 
for a single magnet by the breaking of its translational symmetly. They are restored 
in our approach by use of the average over all translationally equivalent chemical 
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Tabk 2 Distribution of quanlum states of an ensemble Z of magner, mer the Brillouin 
mnc for N = 12,6 = (8,4), s = 112, si = 1, wilh conlribulions E" relevan1 rdrckd 
Brillouin mncs. 

Oenmlizcd star EosemMc RarcEed 
Brillouin mnc {E} {il,k5} {i2} { i3}  { i4}  {6} 

~~ 

Zl B = B / 1  1728 1728 1728 1728 1728 1728 
B = B / 1  1716 1716 1716 1716 1716 1716 

24 - 24 - 24 24 
1740 1716 1740 1716 1740 1740 "tal 

B E  B/1 1716 1716 1716 1716 1716 1716 
22 - 22 - 22 22 

lbld 1742 1716 1738 1716 1742 1716 

Z2 BIZ 

z3 BIZ 
814 - 4 - - - 4 

configurations. We have examined the distribution e of quantum states of the system 
over the Brillouin zone B. 

The distribution Q is transparently determined by the structure of orbits of the 
action of the translation group C, on the set Q Z  of all magnetic configurations of the 
ensemble 2 of magnets entering the configurational average. The key observation 
is that an orbit with the stabilizer C, a C ,  yields the n-tuply rarefied Brillouin 
zone B/n, and thus a single, n-tuply rarefied band. In this way, the distribution 
e becomes inhomogeneous, depending on the overlap of various rarefied Brillouin 
zones B( n), n E K( N). Details of this inhomogeneity are thus described in terms 
of the lattice K ( N )  of divisors of N, and depend on the spatial distribution of 
impurities within the ensemble 2. 

In order to present this dependence, assume hypothetically that one is able to 
prepare a linear magnetic chain, as well as appropriate ensembles of such chains, with 
the following four properties: (i) each chain consists of exactly N nodes; (U) each node 
takes on one of the two values of spin, either s or 8' (with respectively 2s + 1 or 
2s' + 1 projections); (iu) one can control externally the value of spin at each node, 
so that it k possible to realize an arbitrary chemical configuration in the crystal N; 
and (iv) it is passible to determine the structure of energy bands of the system and, in 
particular, the number of full and rarefied bands of appropriate ensembles. Then our 
considerations yield the following predictions concerning existence of rarefied bands. 
(a) A characteristic feature of the chemically homogeneous magnet is the existence of 
all types of rarefied bands, predicted by the lattice K ( N ) .  Full bands ( K  = 1) emerge 
from all those magnetic configurations that exhibit fully broken translational symmetry, 
whereas n-tuply rarefied bands arc associated with such magnetic configurations that 
possesses the magnetic Bravais cell of size i = N/n, n E K (  N). @) When the magnet 
with impurities with spin s' > s exhibits a residual translational symmetry C, a C, of 
chemical configuration, then firstly, all those rarefied bands of the type n', for which 

K ' E  i K ( n )  c K ( N )  

holds, are selectively enhanced in comparison to the homogeneous case, i.e. ez(  n') > 
eh(n')  with 2 and h denoting respectively the ensemble with impurities and the 
homogeneous magnet, and secondly the remaining rarefied bands, for which n' E 
IC( N)\iK( n), are completelywiped out. In particular, the case n = 1 with completely 
broken translational symmetry yields an exactly homogeneous distribution e. 
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We thus arrive at the general mnclusion that the existence of rarefied bands 
for an ensemble of magnets with impurities i intimately related to the residual 
translational symmetry. A mmplete chemical disorder wipes out any rarefied bands, 
whereas a residual symmetry C, provides only thme bands which are classified by 
the corresponding lattice K ( n ) ( R K ( n )  being a sublattice of K (N)). 

7. Weyl's reeipe and kinematieal relativity 

Weyl's recipe can be looked at as a relativity postulate for any physical system or 
mathematical model with a general meaning that intrinsic features of the object 
under investigation should not depend upon any accidental details like labelling of 
elements of the system, reference frames, and so on (Mouzymas 1976, 1987). We 
discuss it here with the specific meaning of kinematical relativity. Quantum states 
of the Heisenberg magnet with a definite value of quasimomentum k are analogues 
of free motion of a body in classical mechanics. It is the essence of Newton's First 
Law that all states of free motion without external fields are mutually equivalent, 
and can be related to appropriate inertial systems. The relativity postulate imposes 
the condition that there is no system of 'absolute rest'. In the case of a Heisenberg 
magnet we do have the analogue of absolute rest, which is the centre k = 0 of the 
Brillouin zone B, or equivalently, the generalized star B(,). Distinction of this point 
within the Brillouin zone B in the kinematical aspect manifests itself in the fact that 

e@) 2 e ( k )  lkl > 0 (59) 

Le. that ~ ( 0 )  is always the maximal value of the distribution e. It is clear from the 
observation that the generalized star BCN) belongs to each rarefied Brillouin zone 

B(,) E B/n n E K ( N ) .  (60) 

In general, kinematically distinguished points of the Brillouin zone B constitute 
generalized stars B(r ) ,  n E K (  N ) .  Namely, the distribution e is constant on each 
generalized star B(") for an arbitrary chemical configuration of impurities. This 
feature can be broken only by some model assumptions which destroy the orbit 
structure of the space of quantum states of the system. 

The case n = 1 corresponds to the general position in the Brillouin zone, and is 
related to the minimal value of the distribution e, i.e. 

e(1) < ~ ( k )  k E B(") n > 1. (61) 

In this context, it is important to point out the role of irregular orbits O,, n > 1, in 
the set Q z  of magnetic configurations of the ensemble Z. These orbits alone realize 
the distinction between various generalized stars in the Brillouin zone. This distinction 
is reflected in the partial order of the lattice K ( N ) ,  an implicit manifestation of 
the hidden symmetry Aut C, of Weyl's recipe. Choosing an appropriate residual 
symmetry C, of the chemical configuration, one can enhance selectively various 
kinds of inhomogeneities of the distribution e. Any non-trivial aanslational symmetry 
C, , n > 1, results in a kinematic distinction of states of 'absolute rest', i.e. states 
corresponding to the centre B(,), whereas the m e  n = 1 yields the lack of such 
a distinction. Thus an ensemble Z with totally broken translational symmetry is an 
analogy of Galilean invariance in the discrete Brillouin zone. 
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8. EBeftp of finite size and arithmetic p r o p d o s  ol N 

We have discussed hitherto kinematical properties of a magnet, or an ensemble of 
magnets, with a Iixed number N of all d e s .  N defines the size of a Onedienshna~ 
crystal I?. An evident result, emerging unambiguously from this and previous papers 
(Lulek 1W, Florek and Mek 1987, h l e k  1988, 1989a, b) is the strong dependence 
of characteristics of a finite crystal on the arithmetic smcture of N. This dependence 
manifests itself, in particular, in the prominent mle of the lattice K( N) of all divisors 
of N. This lattice proves to be an adequate tool in a complete description of such 
physical characteristics as the classification of Peierls-like phase transitions related to 
all possible ways of breaking translational symmetry ( K u h  e( d 1989, 1991), or 
labelling the lypes of rarefied hands. 

At 6rst sight, this feature seems to be inmnsistent with a common opinion that 
intrinsic properties of a sufficiently large system should not depend on the arithmetic 
structure of N .  However, at this point we have to distinguish between two things: the 
bulk properties of aystals, which do not depend on N, and the effects of a finite size 
of a particular nystal, which are Ndependent. Thus full energy bands are present in 
each crystal and can &in general-attributed to bulk properties, whereas rarefied 
bands are typical characteristics of a finite crystal. 

One can put the question of a physical classification of size effects in the set 
of all magnets N. Contrary to some temptations based on a naive intuition, the 
'natural' linear order in the ring 2 of integers is not a proper basis for such an aim. 
The main reason is that a change of N according to the linear order yields a highly 
intricate behaviour of kinematical properties of magnets, involving rapid variations of 
appropriate lattices K(  N), their socles l ~ (  N), as well as the oorresponding arithmetic 
exponents. On the other hand, a change of N in accordance with the partial order 
suggested by the arithmetic structure of integers yields a much more straightfonvard 
description. 

Let us first mnsider the set 

C(p)={ICTIN=p",a=1,2,  ...} (62) 

K ( p " )  = { K  = pP'I0 < a' < a} (63) 

K(PO-9 c WP")  (64) 

of all aystals N, where N is a p e r  of the single prime number p. The lattice 

is characterized now by the linear order of arithmetic exponents, and yields 

i.e. each lattice K(p") covers all preceding lattices with a' < a. The minimal 
quantum of quasimomentum for N = p" is 27r/p0, and an increase of the arithmetic 
exponent a E a , ( N )  yields a denser distribution of the discrete Brillouin zone B in 
the segment 

B, =(- X ?  RI (65) 
with the factor l/p. Crystals within each set C(p)  have simple kinematical properties, 
determined by a single arithmetic exponent a. For example, the number of Po'-tuply 
rarefied bands of the homogeneous crystal for N = pa is 

( n p -  1) a'< a. (66) ) = 
m( p, pa' 
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Now assume that R h a set of prime integers, > 1, and consider the set 

C(R)  = { i q N  E Z+,T(N) = T )  (67) 

of all crystals with the same socle T. Appropriate lattices K ( N )  already have 
non-trivial partial orders, since arithmetic exponents o p ( N )  and a , , ( N ) , p  # p’, 
are no longer wmparable. It h reflected in the obsenation that quanta of 
quasimomentum, corresponding to different prime numbers, are incommensurate. 
Kinematical properties of crystals of the set C( R )  display a regularity consistent with 
the partial order imposed by the multidimensional socle R ,  but are not necessarily 
smooth with respect to the linear order imposed by the ring 2 of integers. 

We observe therefore that N can increase in two essentially different ways: (i) 
by an increase of the socle A, ie. by the addition of some new prime numbers p, 
or (ii) by an increase of arithmetic exponents (I,. Case (U) yields a smooth variation 
of kinematical properties of the crystal, whereas case (i) introduces qualitatively new 
features. The situation is demonstrated in figure 2 for the three-dimensional socle 
R = {2,3,5). All elements of the lattice K(360) presented in this figure (and, in 
particular, the clock dial plate of section 5) correspond to a possible broken F’eierls- 
like phase of the crystal with N = 360 states. 

4 5  

5 10 40 80 

F@re Z The lattice K(M0) presents a threedimensional parallelepiped, built on Ihe 
socle r = {Z, 3, S), iu the elementary Bravais cell, with arrows cm edges indicating 
the p n i a l  order. An increase a[ N by multiplication pdn be done by a combination 
of WO operations. (i) Addition of tunher primes to the socle r,  which mul t s  m 
enlarging of dimension In(N)I of the lattice K( N). oi) Increase of arithmetic exponents 
o , ( N ) , p  E a ( N ) ,  which Yelds an appropriate exlension of the parallelepiped K ( N ) .  
The operation (i) is responsible for qualitative changes of kinematical properties of 
magnee, inconsistent with the linear order at integers, whereas the operation (ii) yields 
mty smooth variations of them. 

It is worthwhile to observe that the limit N + 00 (taken according to the linear 
order in 2)  excludes all fractal symmetries of finite crystals. Within the recipe of 
Weyl, we have 

= 22 = {T1,T-1} (68) 

IAutC,I = p ( N )  > 2 N > 2. (69) 

whereas each (large enough) N yields 
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It can be interpreted that the group Aut 2 of the hidden symmetry of the infinite 
chain is the subgroup of all hidden symmetry groups Aut C,, N > 2, and each 
of them encloses the onedimensional inversion r,-the only non-trivial common 
element of all these groups. 

Crystals fl with various arithmetic properties distinguish different subsets 
( r / N ) B  C B, of the continuous Brillouin mne E,. In principle, standard 
calculations of spectral density of states involving integration over the continuous 
Brillouin zone Bc should be replaced by summation over the corresponding discrete 
Brillouin zone E ,  using the appropriate inversion formulae of Mbbius instead of 
differential calculus. Weyl’s recipe suggests that the natural subsets of the discrete 
Brillouin zone B in substituting differentials by differences are generalized stars 
B(“),n E K ( N ) .  They are entirely sufficient with respect to kinematical properties 
(even in the use of impurities), and require some further division into smaller subsets 
in analysing the dynamics. 

Rarefied bands are, in general, not too important in statistical physics since the 
limit N - m implies that the ratio of these bands to the total number of quanNm 
states tends srponentially to zero (cf equation (44)). n e s e  bands can, however, be 
dynamically important in two aspects. F i t ,  they should be taken into aculunt for 
sufficiently small N, e.g. in macromolecules or in physics on the mesoscopic scale. 
In the extremely small case, N = 2, i.e. for the ground spin states of the hydrogen 
molecule, triplet states S = 1 correspond to the centre k = 0 of the discrete Brillouin 
zone B = {O, l}, whereas the singlet state S = 0 corresponds to the boundary k =1. 
Thus Z2 = 4 states of the spin s = 1/2 on N = 2 nodes can be arranged into 
three bands: one full band for M = 0, and two doubly rarefied (it means here single 
states) for M = &I. Secondly, the role of rarefied bands becomes important in such 
cases when they have a relatively low energy. In these situations they also become 
meaningful on the macroscopic scale, e.g. in Peierls phase transitions (Kutma a a1 
1989, 1991), since they are immediately related to the shape of the elementary Bravais 
cell. 
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